

Module 16: General Engine Diagnosis

TERMS AND DEFINITIONS

- EVALUATING ENGINE PERFORMANCE
- BENEFITS OF OPERATOR QUESTIONNAIRE
- MAJOR CHECKPOINTS IN A VISUAL INSPECTION
- MAJOR PERFORMANCE CHECKPOINTS
- PERFORMANCE TEST MADE WITH THE ENGINE ON A DYNAMOMETER

Terms and Definitions

READY FOR REVIEW

- Aeration is foaming caused by air mixing with a liquid, such as oil or fuel.
- Dynamometer is a device that measures the engine power output by applying a load to the engine.
- Diagnostic data link (DDL) allows shop test equipment to "plug into" the electronic control module (ECM).
- Electronic control module (ECM) is a computer that processes information from engine sensors and controls the fuel injector solenoid.
- Electronic unit injector uses an ECM-controlled, injector-mounted electric solenoid to control the amount and timing of the injected fuel.
- Infrared thermometer is an instrument that measures temperatures up to 500°F (260°C).
- Magnahelic gauge is a sensitive instrument that measures small differences in pressure or vacuum.

- FUNCTIONS OF ENGINE COMPUTER FAULT DETECTION
- SENGINE COMPUTER FAULT CODE STORAGE
- S ENGINE COMPUTER FAULT CODE RETRIEVAL
- SAE CODE IDENTIFIERS
- Manometer is a device that measures positive or negative pressure (vacuum).
 - Note: A manometer may use a column of water or mercury (Hg) for making measurements.
- Mercury manometers are typically used in high heat applications such as exhaust manifolds.
- Personality module contains customer-specified information concerning engine performance.
- Pyrometer is a device that measures high exhaust temperatures [usually over 300°F (149°C)].
- Snapshot is ECM recordings at the time and operating parameters when a fault occurs.
- Symptom is an indication of a mechanical or electrical/electronic problem.
- Tachometer is a device that measures engine speed.
- Troubleshooting is a process using test instruments to locate and diagnose the cause of failure.

Evaluating Engine Performance

READY FOR REVIEW

- Surveying the operator is the best source of information.
- Visually inspect the vehicle.
 - Fluid levels
 - Fluid condition
 - Component condition
- Test the performance of the vehicle.
 - Without a dynamometer

Benefits of Operator Questionnaire

READY FOR REVIEW

- Provides direct communication between the operator and technician
- Assists the technician in troubleshooting, especially when no fault codes are available
- Eliminates wasted technician time by providing specific information

- - With a dynamometer
- Use computer diagnostic abilities to test the vehicle.
 - On-board system self-tests
 - Hand-held testers
- Locate symptom(s) in the manufacturer's troubleshooting chart.
 - With a symptom
 - With a trouble code

Major Checkpoints in a Visual Inspection

READY FOR REVIEW

- Cooling system
 - Levels
 - Condition (supplemental coolant additive level)
 - Maintenance history
 - Leaks (radiator/hoses/pump)
- Lubricating system
 - Level
 - Condition (sample)
 - Maintenance history
 - Leaks
- Fuel system
 - Fuel level
 - Condition (sample)
 - Leaks
 - Hoses/clamps
 - Wiring harnesses/connectors

Major Performance Checkpoints

READY FOR REVIEW

- Cooling system
 - Pressure test the radiator/cap.
 - Check for bubbles/flow at the operating temperatures.
- Lubrication system
 - Pressure check with a shop gauge
 - Temperature check (sump)
- Fuel system
 - Pressure check
 - Flow (amount in a given time)

- Electrical system
 - Belts
 - Connections (clean and tight/corroded)
 - Wiring harnesses/connectors
 - Battery electrolyte level
 - Charging system
- Air intake system
 - Filter(s)
 - Ducting/hoses
 - Clamps/joints
 - Turbocharger
- Exhaust system
 - Pipes
 - Connections
 - Muffler
 - Turbocharger
 - Aeration
- Electrical system
 - Voltage
 - Current
- Air intake system
 - Restriction level (vacuum)
 - Pressure test the intercooler core.
- Exhaust system
 - Restriction (back pressure)
 - Turbocharger noise

Performance Test Made With the Engine on a Dynamometer READY FOR REVIEW

- Engine power output
 - Horsepower
 - Torque
- Exhaust smoke analysis
 - Blue-Excess lubrication oil in the combustion chamber
 - Black-Incomplete combustion of fuel
 - White-Noncombustion of fuel
- Fuel consumption
- Crankcase blow-by

- Air intake system
 - Restriction
 - Boost pressure
- Exhaust system
 - Back pressure
 - Temperature
- Lubrication system
 - Pressure
 - Temperature

Functions of Engine Computer Fault Detection

READY FOR REVIEW

- Sensing abnormal operation
 - The ECM detects abnormal input from the sensors.
 - The ECM determines the extent of variation.
 - If engine-threatening, the ECM limits the engine speed and power output.
- Communicating with the driver
 - Warning light

Engine Computer Fault Code Storage

READY FOR REVIEW

- Inactive fault code
 - The "Check Engine" light illuminates while the problem exists.
 - The fault code is stored in memory.
 - The fault code is erased by a computer command.
- Active fault code
 - The "Check Engine" light comes on and stays on.
 - The fault code is stored in memory.

Engine Computer Fault Code Retrieval READY FOR REVIEW

- Hand-held communication tool
 - Connects to the DDL
 - Shows any fault stored in memory
 - Initiates a diagnostic sequence for the ECM to check all electronic components
 - Allows the technician to see the sensor output and actuator response
- Personal computer (PC) with a translator device
 - The translator connects to the DDL, and the PC connects to the translator.
 - Shows the fault codes
 - Shows the snapshot parameters on screen
 - Allows the technician to reprogram the PROM (or EEPROM) with new parameters (some systems)

SAE Code Identifiers

READY FOR REVIEW

- Each fault code uses three, three-digit number groups to describe the problem. An example would be: 128 s110 04.
 - The first three-digit number group is the message identifier (MID) that identifies which microprocessor is broadcasting the code.
 - The second three-digit number group is either the parameter identifier (PID) or the subsystem identifier (SID).

- Warning buzzer (optional)
- Power loss as the ECM begins to derate/rampdown
- Communicating with the technician
 - Fault code stored in memory
 - Snapshot data
- The fault code is erased by a computer command.
 Snapshot data
 - The fault code is stored in memory.
 - The ECM records the time (in engine hours).
 - The ECM records the engine operating conditions for a short time before and after the fault occurred.
- The "Check Engine" light
 - System activation (refer to the OEM troubleshooting manual)
 - Engine off, key on
 - OEM-authorized jumper wires or test leads installed in the DDL (some systems)
 - Pressing a diagnostic switch (some systems)
 - Lamp flashes are translated as digits for fault codes.
 - Examples are Code 25 = 2 flashes, pause, 5 flashes; Code 47 = 4 flashes, pause, 7 flashes.
 - Allows the technician access to the fault codes with no test equipment
 - The PID gives a numerical value in degrees, volts, or psi.
 - The SID identifies the part that is malfunctioning.
 - The third three-digit number group is the fault mode identifier (FMI) that identifies what is wrong with the sensor signal and indicates whether the problem relates to the current flow or voltage.