CDX Diesel HVAC

Module 2: Fixed Orifice Tube and Thermal Expansion Valve Air Conditioning

- FIXED ORIFICE TUBE AIR-CONDITIONING SYSTEM
 CONTROL DEVICES
- THERMOSTATIC EXPANSION VALVE SYSTEM
- THERMAL EXPANSION VALVES

Fixed Orifice Tube Air-Conditioning System

READY FOR REVIEW

- Fixed orifice tube system components
 - Condenser
 - Evaporator
 - Compressor
 - Orifice tube
 - Accumulator
 - Connecting pipes and hoses
 - Thermostat
 - Blower fans
 - Pressure switches
- Orifice tube
 - Located between the condenser and the evaporator
 - Provides the restriction to flow necessary for system operation
- Switching on the air-conditioning system
 - The electromagnetic clutch is energized on the compressor drive plate.
 - The compressor is driven by the engine crankshaft.
- Flow of vaporized refrigerant
 - Drawn from the low-pressure side of the system by the compressor
- From the compressor to the condenser
 - Discharged from the compressor as high-pressure, high-temperature vapor
 - Flows to the condenser
 - Cooled by air flowing across the condenser coils and fins
- Condensation
 - A reduction in temperature causes the refrigerant vapor to condense.
 - Turns into liquid, which flows to the filter and then to the orifice tube
- Loss of pressure
 - Liquid refrigerant loses pressure by flowing through the fine tube.
 - Forced to expand suddenly by passing through the nozzle
 - Enters a larger volume of the evaporator

- Boiling and evaporating
 - · A drop in pressure causes the low-pressure, lowtemperature liquid to boil.
 - Liquid mist evaporates rapidly in the evaporator coils.
 - Absorbs heat from air passing across the external fins
- Cooled air to the vehicle interior
 - Cooled air is directed to the interior of the vehicle by blower fans.
 - Refrigerant in the evaporator flows on to the accumulator.
- Accumulator
 - Acts as a storage volume for the refrigerant
 - Separates the liquid from the vapor
- Refrigerant vapor enters the accumulator.
 - Enters at the top of the accumulator
 - Any liquid refrigerant falls to the bottom.
- Final evaporation
 - The accumulator is made from aluminum and has a large surface area.
 - Assists the final evaporation of any liquid refrigerant leaving the evaporator
- Drawn through the outlet tube
 - Refrigerant vapor is drawn off from the top of the accumulator through the outlet tube by the compressor.
- Hole in the outlet tube
 - Small hole at the bottom of the outlet tube
 - For small amounts of lubricating oil that settle at the bottom of the accumulator
 - Drawn to the compressor
- Accumulator filters and desiccants
 - The accumulator contains filters and desiccants.
 - Removes impurities and moisture from refrigerant passing through

Control Devices

READY FOR REVIEW

- Purpose of control devices
 - To ensure maximum efficiency
 - To protect components from damage
- Thermostat
 - Used to sense the temperature of evaporator fins
 - Helps ensure that the temperature does not drop below 33.8°F (1°C)
 - If it drops to 32°F (0°C) or less, moisture condensing out of the air will freeze on the unit.
 - Will block the flow through the evaporator
- When the temperature of the fins drops
 - The fins of the evaporator drop to 33.8°F (1°C).
 - The thermostat contacts open.
 - Breaks the electrical circuit to the compressor clutch
 - Stops the compressor from circulating refrigerant
- When the temperature rises
 - The evaporator temperature rises to about 39.2°F (4°C).
 - The thermostat contacts close.
 - The electrical circuit to the compressor clutch is restored.
- Heat load increases.
 - The fixed orifice tube cannot alter the amount of refrigerant entering the evaporator.
 - Therefore, extra cooling is required and heat load on the system increases.
 - The compressor cycles on for longer periods.
- Heat load decreases.
 - As heat load decreases, the compressor cycles off for longer.

Thermostatic Expansion Valve System

READY FOR REVIEW

- Components of the system
 - Condenser
 - Evaporator
 - Compressor
 - Receiver drier
 - Thermostatic expansion valve
 - Connecting pipes and hoses
 - Thermostat
 - Blower fans
 - Pressure switches
- Thermostatic expansion valve
 - Also called a TX valve
 - Located at the entry to the evaporator
 - Provides a throttling or restricting function to control the quantity of refrigerant entering the evaporator

- Cycling
 - Cycling adjusts the system to the heat load.
- High-pressure switch system protection
 - System protection is needed against high pressures.
 - Provided by the high-pressure switch
 - Mounted in the high-pressure line between the condenser and the orifice tube
- High temperatures and pressures
 - May develop if the condenser is unable to transfer its heat effectively to the outside air
 - May be due to blockage of the condenser fins or an inoperative electric fan
- High-pressure switch
 - If this occurs, the high-pressure switch opencircuits the compressor clutch.
 - Prevents the compressor from circulating refrigerant
- If a leak develops
 - A leak may develop and refrigerant is low in charge.
 - The system pressure falls below a set value.
 - The low-pressure switch on the low-pressure side of the system turns the compressor off.
- Lubricating oil
 - A lack of lubricating oil can damage the compressor.
 - Carried around the system by refrigerant
 - Prevents damage to the compressor
 - Also provides for the complete vaporization of all liquid refrigerant entering the evaporator
- Refrigerant and lubricating oil
 - The system is charged with refrigerant.
 - Also charged with lubricating oil
 - Circulates with refrigerant at all times
- The air-conditioning system is switched on.
 - The electromagnetic clutch is energized on the compressor drive plate.
 - The compressor is driven by the engine crankshaft.
- Vaporized refrigerant is drawn in.
 - Drawn in from the low-pressure side of the system by the intake side of the compressor
- Discharged from the compressor
 - Discharged from the compressor as high-pressure, high-temperature vapor

CDX Diesel HVAC

- Flows to the condenser
- Cooled by air flowing across the condenser coils and fins
- Condensation and flow to the receiver drier
 - A reduction in temperature causes refrigerant vapor to condense.
 - Turns into liquid, which flows to the receiver drier

Thermal Expansion Valves

READY FOR REVIEW

- TX valve
 - Determines the amount of liquid refrigerant flow
 - A spring-loaded valve is controlled by different pressures on each side of the connecting diaphragm.
- Pressure in the chamber "A" side of the valve
 - Determined by the temperature sensing bulb
 - The bulb is taped to the evaporator outlet.
 - Insulated from air temperatures
- Sensing bulb
 - Filled with refrigerant
 - Connected to chamber "A" by the capillary tube
 - The temperature at the evaporator outlet determines the pressure in the bulb.
- Higher temperatures
 - Will give higher pressures
 - Will tend to open the TX valve wider
 - Allow more refrigerant to flow through
- Lower temperatures
 - Will give lower pressures
 - Will tend to close the TX valve
 - Reduce the flow of refrigerant
- Pressure in the chamber "B" side of the valve
 - Determined by the refrigerant pressure in the evaporator
 - Also determined by the force supplied from the valve spring
 - The spring is often called the superheat spring.
- Superheat spring
 - Designed to ensure that the temperature of refrigerant leaving the evaporator is between 35.6°F to 48.2°F (2°C to 9°C) higher than the boiling point of refrigerant at the current operating pressure
- Superheat
 - The difference in temperature is called "superheat."
 - Ensures that all liquid refrigerant entering the evaporator is vaporized before leaving
- When the compressor switches on
 - Suction from the compressor removes refrigerant vapor from the evaporator.
 - Lowers its pressure

- Receiver drier
 - Acts as a storage volume for liquid refrigerant
 - Contains a filter and desiccant (drying material)
- Flow to reach the pick-up tube and TX valve
 - Liquid refrigerant passes through the filter and desiccant.
 - Reaches the pick-up tube
 - Flows on to the TX valve
- Changes in pressure
 - Reduces pressure in chamber "B"
 - Allows pressure in chamber "A" to move the valve away from its seat by action of the diaphragm
 - High-pressure liquid flows through the orifice.
 - Enters the evaporator as low-pressure liquid
- Liquid expansion and then vaporization
 - Liquid expands into the larger volume of the evaporator.
 - Causes a reduction in its pressure
 - Heat from the air passes over the evaporator fins.
 - Both actions cause liquid to vaporize.
- Low temperature of refrigerant leaving the evaporator
 - Interpreted by a sensing bulb attached to the outlet
 - If the temperature is low, refrigerant in the sensing bulb will contract.
 - Pressure in chamber "A" of the TX valve will reduce.
- Diaphragm movement
 - The diaphragm moves and the valve moves towards the valve seat.
 - Reduces the quantity of refrigerant entering the evaporator
- High temperature of refrigerant leaving the evaporator
 - Refrigerant in the sensing bulb expands.
 - Exerts more pressure in chamber "A"
 - Causes the valve to move away from its seat
 - Allows more refrigerant to enter the evaporator
- Amount of refrigerant flow
 - Depends on the quantity of heat to be removed from air passing over the evaporator fins
 - More heat means more refrigerant is required to remove it.
 - Less heat means less refrigerant is required.
- Control devices
 - Fitted into the system
 - Ensure maximum efficiency
 - Operate as described in the section on the fixed orifice system