CDX Diesel HVAC

Module 3: Air-Conditioning Components

- CONDENSERS AND EVAPORATORS
- LINES, OR PIPES, AND HOSES
- THERMAL EXPANSION (TX) VALVE CONSTRUCTION

Air-Conditioning Compressors

READY FOR REVIEW

- Function of the compressor
 - · Circulates refrigerant through the air-conditioning system
 - Normally driven by a belt from the engine crankshaft
- Four basic types
 - Reciprocating piston
 - Rotary vane
 - Scroll
 - Axial piston
- Axial piston type
 - One of the most common types used
- Cylinders
 - Placed around the drive shaft and parallel to the axis
 - Each cylinder has a doubled-ended piston.
 - Allows a separate pumping chamber at each end of the cylinder
- Pumping chambers and valves
 - Each pumping chamber has a set of inlet and discharge valves.
 - Inlet reed valves are connected to the inlet port of the compressor by drillings.
 - Discharge valves are connected to the discharge port by drillings.

Condensers and Evaporators

- Condenser function
 - Transfers heat from the high-pressure, hightemperature refrigerant to the outside air
- Condenser positioning
 - Normally positioned in front of the radiator
 - Exposed to maximum ram air flow when the vehicle is in motion
- Assisted air flow
 - · Air flow is assisted by the engine cooling fan or by the auxiliary electric fan.
 - Needed to create sufficient air flow when the vehicle is stationary
- Condenser construction
 - Usually made as a continuous coil of thin tube
 - · Meshed with a compact series of fins surrounding it

- TEMPERATURE-MONITORING THERMOSTAT
- **REFRIGERANTS**
- PRESSURE SWITCHES
 HEATING ELEMENTS
- Swash plate
 - Attached to the drive plate at an angle
 - Rotation of the drive shaft causes the outer edge of the swash plate to constantly change its linear position.
- Pistons
 - Connected to the outer edge of the swash plate by swiveling ball joints
 - The action of the plate and ball joints continually moves the pistons back and forth in the cylinder.
- Inlet reed valves
 - The volume above the piston increases.
 - ° Refrigerant is drawn into the cylinder through the inlet reed valves.
 - The volume above the piston reduces.
 - Refrigerant is forced out of the cylinder through the discharge reed valves.
- Intake and discharge strokes
 - One end of the cylinder is on an intake stroke.
 - The other end is on a discharge stroke.
 - Dual pumping action
 - Occurs in each cylinder during each revolution of the crankshaft
- Purpose of the fins
 - Fins increase the surface area available.
 - Maximize the amount of heat transferred from refrigerant to the outside air
- Evaporator mounting
 - Mounted in the passenger compartment
 - Positioned so air from the cabin interior passes across the external surface
- Evaporator construction
 - Normally constructed of an aluminum tube
 - Fins are attached to increase the surface area.
 - Maximizes the rate of heat removal from the air

Receiver Drier

READY FOR REVIEW

- Sealed metal canister containing:
 - Filters to remove impurities
 - Desiccants to absorb moisture
- Flow in the receiver dryer
 - High-pressure liquid enters the receiver drier.

Lines, or Pipes, and Hoses

READY FOR REVIEW

- Role in the system
 - To carry refrigerant between the air-conditioning system components
 - Special types of hoses and pipes are needed.
- Why special types of hoses and lines?
 - Can withstand high pressures and temperatures found inside the system
 - Able to flex and withstand vibrations and movement of the engine
- Hoses
 - Used to connect the inlet and outlet ports of the compressor to the air-conditioning system
- Hose connections
 - Crimped to the hose

Thermal Expansion (TX) Valve Construction READY FOR REVIEW

- TX valve
 - Controls the amount of refrigerant entering the evaporator coils
 - Causes a drop in pressure without causing a change of state
 - Constructed of cadmium-plated steel or aluminum

Temperature-Monitoring Thermostat

- Warm air and cooling action
 - Warm air passes across the evaporator fins.
 - The cooling action causes water vapor in the air to condense.
 - Adheres to the fins in the form of water droplets
- Drop in temperature
 - If the temperature of the fins drops to 32°F (0°C) or lower, ice forms on the fins.
 - Restricts air flow
 - Prevents heat transfer to the refrigerant
- Temperature monitoring
 - A thermostat is used to monitor the temperature of the evaporator fins.
 - Controls the system operation within set limits

- Passes down through the filter and desiccant material
- Exits via the pick-up tube at the bottom of the canister
- Moves on to the expansion valve
- Use special unions
- Must be carefully assembled to avoid leaks
- Pipes or lines
 - Rigid tubes of metal
 - Often found connecting components fixed to the body of the vehicle
- Pipe bends
 - All pipes must have properly formed bends.
 - Must be secured to the vehicle body to prevent fatigue cracks
- Pipe connections
 - Flared flanges
 - Threaded unions are welded to the pipe.
 - Three commonly used types:
 - ° Internally equalized
 - Externally equalized
 - H block
- Bellows type
 - The capillary tube is placed about 1 inch (25 mm) into the evaporator core.
 - Contacts the fins
- Capillary tube, bellows, and pressure
 - The capillary tube and bellows are sealed and filled with temperature-sensitive fluid.
 - The fluid expands and contracts with the temperature changes.
 - Increases or decreases pressure in the bellows
- Bellows and electrical circuit
 - The bellows is positioned to open and close the set of contacts.
 - The contacts form part of the electrical circuit to the compressor clutch.

Module 3: Air-Conditioning Components

CDX Diesel HVAC

- Springs and thermostat housing
 - Springs connect the bellows contact frame and thermostat housing.
 - Try to keep the contacts open.
 - Pressure in the bellows tries to force the contacts closed.
- The temperature falls below the minimum setting.
 - The temperature at the evaporator fins falls below the minimum setting.
 - The fluid in the capillary tube contracts.
- Reduces the size of the bellows
- Springs move to open the contacts.
 - Springs are mounted on the pivoted frame.
 - Move the frame to open the contacts.
 - Break the electrical supply to the compressor clutch.
- Refrigerant stops circulating.
 - The compressor stops circulating refrigerant around the system.

- The temperature of the evaporator fins begins to rise.
- Increased temperature and pressure
 - Increased temperature is applied to the fluid in the capillary tube.
 - Causes an increase in pressure at the bellows
- The bellows acts to close the contacts.
 - The bellows pushes on the pivoted frame against the spring force.
 - Closes the contact points
 - Completes the circuit to the compressor clutch once more
- Refrigerant circulation is resumed.
 - The circulation of refrigerant is resumed.
 - System operation recommences.
 - The thermostat usually cycles the system between a minimum of 35.6°F (2°C) and a maximum of 46.4°F (8°C).
 - Maintains the evaporator at the required temperature

Refrigerants

- About R-12
 - Used for many years in automotive airconditioning systems
 - Known as dichlorodifluoromethane
 - Commonly referred to as freon or R-12
 - Group of gases called CFCs (chlorofluorocarbons)
 - Properties:
 - ° Nonflammable
 - ° Nontoxic
 - ° Chemically stable
 - Soluble in mineral oils
- R-12: boiling point and vaporization point
 - Has a low boiling point
 - Vaporizes at 3.6°F (-30°C)
- R-12 is harmful to the environment.
 - Harmful to the environment
 - A number of alternative refrigerants are considered replacements.
 - The most practical is a R-134-A liquid.
- R-134-A
 - Refrigerant suitable for use in automotive airconditioning systems

- An HFC or hydrofluorocarbon
- Does not contain an ozone-depleting chlorine atom
- R-134-A compared to R-12
 - The boiling point is 10.4°F (-26.2°C).
 - All other refrigerant characteristics are similar to R-12.
 - Only difference: operating pressures and temperatures in the evaporator and condenser are slightly higher than R-12.
- Important differences
 - Unlike R-12, R-134-A is not soluble in mineral oils.
 - New compressor lubricating oils are developed.
- Change in service ports
 - It is important to prevent the wrong lubricant or refrigerant from being installed during servicing.
 - Service ports on the air-conditioning systems are changed.
 - Service equipment for the R-12 system cannot be connected to the R-134-A system.

Pressure Switches

READY FOR REVIEW

- Severe damage potential
 - High pressures and low pressures can cause severe damage to air-conditioning system components.
- High-pressure switches
 - Mounted in the high-pressure side of the system
 - Switch the contacts in the series with the compressor clutch circuit.
- How the high-pressure switch works
 - If the pressure exceeds the switch setting:
 - ° The switch opens the circuit.
 - The compressor clutch and the compressor stop circulating refrigerant.
- Low-pressure switches
 - Mounted in the low pressure side of the system
 - Connected in a series with the compressor clutch

Heating Elements

- Heated rear window
 - The heating element is almost invisible when viewed from the driver's seat.
 - Small resistance wires are embedded within the glass, crossing from one side to the other.
 - When the rear defrost switch is turned on, electrical current flows through the wire.
 - The wire heats up, gradually clearing the fogged glass.
- Exterior mirrors
 - The heating elements are fitted to the exterior mirrors.
 - Keep mirrors free of frosting and fogging

- Low pressures
 - Can occur in air-conditioning systems when refrigerant has escaped
 - If no refrigerant is flowing, lubricating oil flow is also reduced.
 - Can damage the compressor
- How the low-pressure switch works
 - Low pressure causes contacts in the low-pressure switch to open.
 - Breaks the electrical supply to the compressor clutch
 - Stops its operation

- Embedded wire as an antenna
 - Similar wire is embedded within the fixed glass as a radio antenna.
 - Usually separate from the resistance wire
 - Can be located in any fixed window, including the windshield
 - May be fit in more than one window