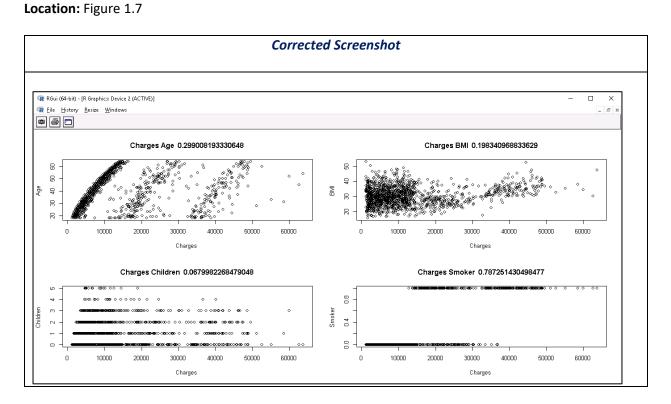
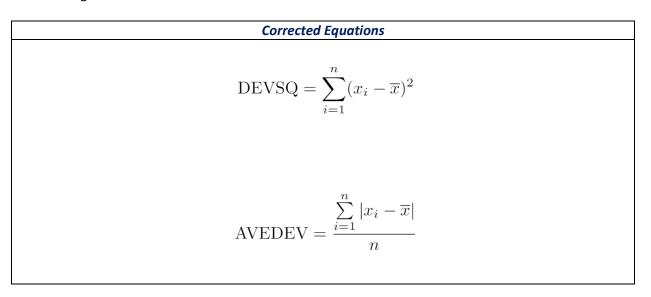
Introduction to Data Mining and Analytics


Errata Sheet

Page: 10 Location: first code block

Current Text	Corrected Text
corr <- cor(df\$charges, df\$age)	corr <- cor(df\$charges, df\$age)
title <- paste("Charges Age ", sprintf("%s", corr))	title <- paste("Charges Age ", sprintf("%s", corr))
plot(df\$charges, df\$bmi, main=title,	plot(df\$charges, df\$age, main=title,
xlab="Charges ", ylab="Age ")	xlab="Charges ", ylab="Age ")
corr <- cor(df\$charges, df\$bmi)	corr <- cor(df\$charges, df\$bmi)
title <- paste("Charges BMI ", sprintf("%s", corr))	title <- paste("Charges BMI ", sprintf("%s", corr))
plot(df\$charges, df\$bmi, main=title,	plot(df\$charges, df\$bmi, main=title,
xlab="Charges ", ylab="BMI ")	xlab="Charges ", ylab="BMI ")

Page: 11



Page: 152 Location: first paragraph

Current Text	Corrected Text
Within Tableau, a single visualization is called a sheet (some analysts review to a sheet as a view).	Within Tableau, a single visualization is called a sheet (some analysts refer to a sheet as a view).

Page: 188 Location: Figure 5.36 and 5.37

-----Page: 230

Location: first paragraph

Current Text	Corrected Text
For example, the following SELECT query will sort sales data by region and then sort that data by employee last name:	For example, the following SELECT query will sort employee data by region and then by last name:

------Page: 257 Location: first code block

Current Text	Corrected Text
SELECT * FROM Customers JOIN Orders WHERE Customers.CustomerID = Orders.CustomerID	SELECT * FROM Customers JOIN Orders ON Customers.CustomerID = Orders.CustomerID

Page: 257 Location: second code block

Current Text	Corrected Text
SELECT * FROM Customers c JOIN Orders o	SELECT * FROM Customers c JOIN Orders o ON
WHERE c.CustomerID = o.CustomerID	c.CustomerID = o.CustomerID

Page: 258 Location: first code block

Current Text	Corrected Text
SELECT c.Lastname, o.OrderID FROM Customers c	SELECT c.Lastname, o.OrderID FROM Customers c
INNER JOIN Orders o WHERE c.CustomerID =	INNER JOIN Orders o ON c.CustomerID =
o.CustomerID	o.CustomerID

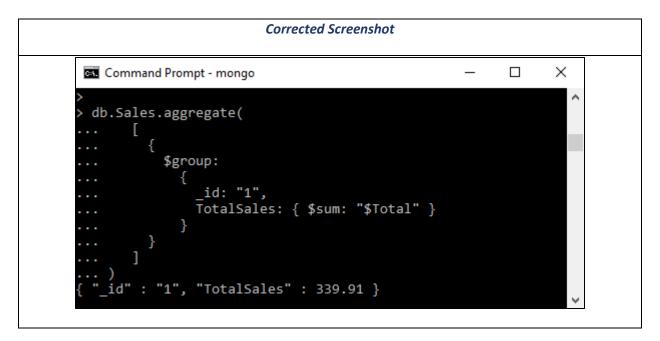
Page: 258 Location: second code block

Current Text	Corrected Text
SELECT c.Lastname, o.OrderID FROM Customers c	SELECT c.Lastname, o.OrderID FROM Customers c
LEFT JOIN Orders o WHERE c.CustomerID =	LEFT JOIN Orders o ON c.CustomerID =
o.CustomerID	o.CustomerID

Page: 259 Location: first code block

Current Text	Corrected Text
LEFT JOIN Orders o WHERE c.CustomerID =	LEFT JOIN Orders o ON c.CustomerID =
o.CustomerID	o.CustomerID

Page: 260 Location: first code block


Current Text	Corrected Text
RIGHT JOIN Orders o WHERE c.CustomerID =	RIGHT JOIN Orders o ON c.CustomerID =
o.CustomerID	o.CustomerID
WHERE CustomerID = NULL	WHERE CustomerID IS NULL

Page: 313 Location: only code block

Current Text	Corrected Text
<pre>db.Products.aggregate([{ \$group:</pre>	<pre>db.Sales.aggregate([{ \$group: { id: "1", TotalSales: {\$sum: "\$Total"} } } }</pre>

Page: 314 Location: figure 7.30

Page: 363 Location: First code block under *Leveraging Python's Built-In Functions*

Current Text	Corrected Text
print('Power of 5 raised to 2 is', pow(5, 2))	print('5 raised to the power of 2 is', pow(5, 2))

Page: 364 Location: first code block

Current Text	Corrected Text
Power of 5 raised to 2 is 25	5 raised to the power of 2 is 25

Page: 366 Location: first code block

Current Text	Corrected Text
16	16
1	1
:	16
16	19
19	

Page: 397 Location: fifth code block

Current Text	Corrected Text
import packageName	library(packageName)

Page: 415 Location: second code block

Current Text	Corrected Text
SELECT COUNT(*) FROM SensorTable WHERE	SELECT COUNT(*) FROM Sensor WHERE
SensorValue IS NULL	SensorValue IS NULL

Page: 417 Location: second code block

Current Text	Corrected Text
SELECT COUNT(*) AS 'Distinct Record Count' FROM Customers	SELECT DISTINCT COUNT(*) AS 'Distinct Record Count' FROM (Select DISTINCT * FROM Customers) c

Page: 418

Location: second paragraph

Current Text	Corrected Text
The following query performs a similar operation	The following query performs a similar operation
on the Sensors table to display duplicate	on the Sensor table to display duplicate
records:	records:

Page: 419 Location: figure 9.8 caption

Current Text	Corrected Text
Displaying duplicate records within the Sensors table	Displaying duplicate records within the Sensor table

Page: 473 Location: first paragraph

Current Text	Corrected Text
The following Python script, ShowNoise.py,	The following Python script, ShowOutliers.py,
displays the noise values identified	displays the noise values identified
by DBSCAN:	by DBSCAN:

Page: 499 Location: second code block

Current Text	Corrected Text
## A 3-nearest neighbors model with no normalization	## A 5-nearest neighbors model with no normalization

Page: 507 Location: second paragraph

Current Text	Corrected Text
The following Python script,	The following Python script,
LogitisticRegressionIris.py, uses the model to	LogisticRegressionIris.py, uses the model to
predict iris flower types:	predict iris flower types:

Page: 522

Location: second paragraph, second sentence

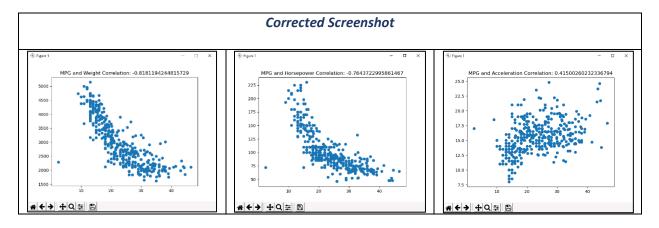
Current Text	Corrected Text
Then open a text editor, such as Notepad, and press Ctrl+V to paste the data. Save the data file to your disk using the name Zoo.csv.	Then open a text editor, such as Notepad, and press Ctrl+V to paste the data. Label the data by inserting the following text, on its own line, at the top of the file: <i>animal_name,hair,feathers,eggs,milk,airborne,aq</i> <i>uatic,predator,toothed,backbone,breathes,venom</i> <i>ous,fins,legs,tail,domestic,catsize,class_type</i> Save the data file to your disk using the name Zoo.csv

Page: 542 Location: second code block

Current Text	Corrected Text
C:\> python SeattleHousing.pyd	C:\> python SeattleHousing.py

Page: 552 Location: first code block

Current Text	Corrected Text
y = np.array([2,3,9,12,15,18,19,20])	y = np.array([2,3,9,13,27,84,105,169])

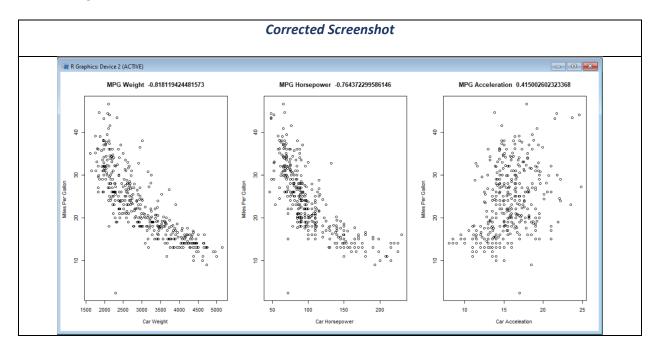


Page: 576

Location: second code block

Current Text	Corrected Text
<pre>coefs = np.corrcoef(data['mpg'], data['weight']) plt.scatter(data['mpg'], data['weight']) plt.title('MPG and Weight Correlation: ' + str(coefs[0,1])) plt.show()</pre>	<pre>coefs = np.corrcoef(data['mpg'], data['weight']) plt.scatter(data['mpg'], data['weight']) plt.title('MPG and Weight Correlation: ' + str(coefs[0,1])) plt.show()</pre>
<pre>coefs = np.corrcoef(data['mpg'],</pre>	<pre>coefs = np.corrcoef(data['mpg'],</pre>
data['horsepower'])	data['horsepower'])
plt.scatter(data['mpg'], data['horsepower'])	plt.scatter(data['mpg'], data['horsepower'])
plt.title('MPG and Weight Horsepower: ' +	plt.title('MPG and Horsepower Correlation: ' +
str(coefs[0,1]))	str(coefs[0,1]))
plt.show()	plt.show()
<pre>coefs = np.corrcoef(data['mpg'],</pre>	<pre>coefs = np.corrcoef(data['mpg'],</pre>
data['acceleration'])	data['acceleration'])
plt.scatter(data['mpg'], data['acceleration'])	plt.scatter(data['mpg'], data['acceleration'])
plt.title('MPG and Weight Acceleration: ' +	plt.title('MPG and Acceleration Correlation: ' +
str(coefs[0,1]))	str(coefs[0,1]))
plt.show()	plt.show()

------Page: 577 Location: figure 13.12



Page: 578 Location: third code block

Current Text	Corrected Text
corr <- cor(df\$mpg, df\$weight) title <- paste("MPG Weight ", sprintf("%s", corr)) plot(df\$weight, df\$mpg, main=title, xlab="Car Weight ", ylab="Miles Per Gallon ")	corr <- cor(df\$mpg, df\$weight) title <- paste("MPG Weight ", sprintf("%s", corr)) plot(df\$weight, df\$mpg, main=title, xlab="Car Weight ", ylab="Miles Per Gallon ")
<pre>corr <- cor(df\$mpg, df\$horsepower) title <- paste("MPG Horsepower ", sprintf("%s", corr)) plot(df\$weight, df\$mpg, main=title,</pre>	<pre>corr <- cor(df\$mpg, df\$horsepower) title <- paste("MPG Horsepower ", sprintf("%s", corr)) plot(df\$horsepower, df\$mpg, main=title,</pre>
<pre>corr <- cor(df\$mpg, df\$acceleration) title <- paste("MPG Acceleration ", sprintf("%s", corr)) plot(df\$weight, df\$mpg, main=title,</pre>	<pre>corr <- cor(df\$mpg, df\$acceleration) title <- paste("MPG Acceleration ", sprintf("%s", corr)) plot(df\$acceleration, df\$mpg, main=title,</pre>

Page: 579 Location: figure 13.13

Page: 601 Location: third code block

Current Text	Corrected Text
After you install these two applications, use PIP to install the Facial_Recognition and DLib modules:	After you install these two applications, use PIP to install the face_recognition and DLib modules:

Page: 601 Location: third code block

Current Text	Corrected Text
C:\> pip install Facial_Recognition	C:\> pip install face_recognition
